Generating atmospheric neutrinos with dunetpc

Gianluca Petrillo Yun-Tse Tsai

SLAC National Accelerator Laboratory, U.S.A.

DUNE NDK/High-E Working Group Meeting, October 17, 2018

Short introduction

Gianluca Petrillo

Yun-Tse Tsai

- currently working on a sensitivity study for one model of Boosted Dark Matter from the sun
- neutral current interactions from atmospheric neutrinos are a main background
- ... so we go, take dunetpc, generate events and...

Software

Used software:

- dunetpc v07_06_01
- job configuration: prodgenie_atmnu_max_dune10kt.fcl:
 - DUNE far detector, full size (10 kton, not $1 \times 2 \times 6$)
 - Bartol maximum atmospheric neutrino flux: 20 cos θ bins, 40 energy bins, ν_e , ν_μ , $\bar{\nu}_e$, $\bar{\nu}_\mu$
 - limits the generation to into the cryostat volume
- pulls in:

```
genie v2_12_10c
genie_phyopt v2_12_10
genie_xsec v2_12_10 -q DefaultPlusValenciaMEC
dk2nugenie v01_06_01f -q dkcharmtau
```

Structure of prodgenie_atmnu_max_dune10kt.fcl

The configuration files for atmospheric neutrinos are twofold:

- prodgenie_atmnu_max_dune10kt.fcl for 10 kton detector:
 - sets the services for DUNE 10 kton detector
 - inherits from a standard GENIE generation configuration
 - tells GENIE we are generating atmospheric neutrinos
 - sets generation list to Default+CCMEC
 - sets the flux to Bartol
 - fixes the generation to the cryostat volume
- prodgenie_atmnu_max_dune10kt_1x2x6.fcl for reduced detector:
 - changes the geometry description (Geometry service)

First generation: out of the box

Generated 10000 events, 0.4"/event...

It turns out, the configuration is tuned to the $1 \times 2 \times 6$ geometry!

Second generation: fixed flux window

```
physics.producers.generator.Rl: 70 # meters
physics.producers.generator.Rt: 70 # meters
```


fixes the problem, but it's very inefficient¹ (now 2–3"/event).

¹Due to the fact that the origin of coordinates is on a border of the detector, and the way GENIE casts the atmospheric neutrino flux.

Digression: Bartol flux parametrisation

Maximal ν_{μ} flux as represented in the flux file (it should be an histogram, but printing it this way was a ROOT one-liner...)

Bartol flux is parametrised on:

energy (in logarithmic bins) between 0
and 10 GeV

angle from the vertical

 $(\Delta\cos\theta = 0.1)$ azimut no parametrisation: flux presents cylindrical symmetry

Note the (asymmetric) structure in $\cos \theta$.

Second digression: DUNE coordinate system

The active volume of the far detector is:

- about 12 m on \hat{x} (drift direction)
- about 12 m on \hat{y} (vertical)
- about 60 m on \hat{z} (beam direction)
- active volume (200 TPCs) is 10000 m³ (14 kton of argon)
 - → the standard label 10 kton is the fiducial volume

Focus here is on the labelling of the axes, because...

GENIE atmospheric flux driver assumes \hat{z} to be vertical, and the parameter in the flux description to be $\cos \theta_z$

Second generation: orientation

Is this inconsistency a problem? We work in DUNE coordinates:

Expect distribution uniform in φ_{xz} and structure in $\cos \theta_{y}$

So, GENIEHelper does not fix it in the background. GENIE believes DUNE 60 m tall, DUNE believes sky is toward Chicago.

Third generation

```
physics.producers.generator.FluxRotCfg: "newxyz"
physics.producers.generator.FluxRotValues: [
    +1.0, +0.0, +0.0, # new x axis in old coordinates: be nice and fix thir
    +0.0, +0.0, +1.0, # new y axis in old coordinates: vertical
    +0.0, -1.0, +0.0 # new z axis in old coordinates: westward
    ]
```


Expect distribution uniform in φ_{xz} and structure in $\cos \theta_y$

This rotation points DUNE toward east, about 9 $^{\circ}$ off Fermilab ("ToDo").

Flavour composition

Our 10000 event sample appears to be made of:

	CC	NC		
$\overline{\nu_{\mu}}$	1038	398		
$ar{ u}_{\mu}$	280	169		
$ u_{m{e}}$	597	206		
$ar{ u}_{m{e}}$	126	72		
Aaron's numbers				

(total: 2886 events)

	CC	NC		
$\overline{\nu_{\mu}}$	3581	1321		
$ar{ u}_{\mu}$	1048	594		
$ u_{\mathbf{e}}$	2119	671		
$ar{ u}_{m{e}}$	434	232		
Our sample				

		CC	NC	
	ν_{μ}	1033	381	
	$ar{ u}_{\mu}$	302	171	
	$ u_{\mathbf{e}}$	612	194	
	$ar{ u}_{m{e}}$	125	67	
Our sample				
1 11 0000				

(total: 10000 events) (scaled to 2886 events)

This leaves us comfortable, since it matches Aaron Higuera's numbers² presented at DUNE colaboration week on September 25, 2018.

 $[\]mathbf{^{2}}_{\text{https://indico.fnal.gov/event/16526/session/36/contribution/157/material/slides/0.pdf}$

Flux normalisation

GENIEGen reports an exposure time, which according to the code documentation is in seconds:

```
%MSG-i GENIEHelper: PostEndJob 15-Oct-2018 04:33:50 CDT ModuleEndJob
Total Exposure 3.98375e+08 GMCJDriver GlobProbScale 1.01482e-08 FluxDriver
%MSG
```

Is this reliable?

- Aaron estimates the flux (before oscillation) to be ≈ 2800 interactions/year in 10 kton of argon
- the log file suggests 8 · 10⁴ s (for 10000 events → 971 interactions/year in all cryostat steel, 17 kton of argon, ...) → no statistical uncertainty provided, but after 10000 events it should be "small"

This leaves us uncomfortable, since it does *not* match Aaron's numbers.

We are investigating what the differences might be.

Summary

- the standard DUNE 10kt atmospheric neutrino generation configuration does not cover the full detector
- all standard DUNE atmospheric neutrino generation configurations have wrong flux orientation
- I will commit a branch feature/gp_AtmoFluxFixes in dunetpc with the changes mentioned in this talk
- we still have to understand the meaning of the normalisation suggested by GENIE

Many thanks to Aaron Higuera and Hirohisa Tanaka for the discussions and help!